
JavaScript on TV

Building full screen apps with Vue.js

Welcome to multiplatform hell.

There’s so many of them!

● LG Netcast
● LG WebOS
● Samsung Tizen
● Android TV
● Firefox OS (srsly.)
● Roku TV
● Fire TV
● tvOS
● … and the list goes on.

webapp!
It’ll work everywhere.

Welcome to multiplaform cross-browser hell.

There’s still quite a lot of them!

● Mostly WebKit forks
● Mostly frozen in time
● Some APIs missing
● Some user agents are fake
● Video support is hilarious
● You look for matching desktop browsers

How TV development looks

● Fixed wrapper
● Mashing on the keyboard
● Surrounded by TVs

Off to a good start with vue-cli

● Webpack template
● Dev environment (linters, HMR, error

overlay)
● Production builds
● Unit & E2E tests
● A router
● VueX had to be added

New problems

Section switching

● Should I write a mini handler?
● Doh, router!
● Free transitions

Navigation

● Router saves the day again
● Nested routes/partial templates

Global state

● VueX is really helpful
● App has a _lot_ of global state
● Reactive programming greatly simplifies

this

Optimising for performance

● The TVs are slow
● The browsers are even slower
● We need to dig deep
● Followed a container/component structure

from Redux
● Dumb components are easy to modify
● Architecture quality is not affected

Remote control

● By far the most interesting problem
● Opposite flow of events affects

architecture
● Constraints on what kind of states you can

have
● Reactive programming, again, really helps

The solution
Main event handler:

if (specialCaseActive) {
 specialCaseHandler();
} else {
 regularHandlers[currentRoute]()
}

Mixin:

export default {
 created() {
 regularHandlers[currentRoute] =
 this.handleKey;
 }
}

Each page component:

export default {
 ...
 mixins: [registerkeyHandler],
 methods: {

handleKey(key) { ... }
 },
 ...
}

Final verdict:
surprisingly applicable

mato@zgajner.com, work done for united.cloud

